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Abstnct-We consider here the solution of the transient coupled problem corresponding to the responses of
ferroelectric ceramics in the axial mode experiment for which the direction of wave propagation corresponds to
the direction of remanent polarization. The external circuit of the problem consists of an inductor and a resistor
connected in series. The coupled equations which result from balance of linear momentum and Kirchhoff's law
of circuits are solved using Laplace transform techniques and the inverse transforms are obtained via a
numerical method developed in a previous paper. The numerical solutions obtained are in Qualitative agreement
with available experimental results.

1. INTRODUCTION

In this paper we consider the dynamic electromechanical responses of ferroelectric ceramics. It
is known that a poled specimen of such a material when subjected to mechanical loads
responds electrically, and when subjected to an external electric field responds mechanically.
The problem we have in mind corresponds to the axial mode experiment for which the direction
of wave propagation corresponds to the direction of remanent polarization, and the external
circuit consists of an inductor and resistor connected in series[I]. Our aim is to obtain
numerical solutions for this problem and to ascertain the range of results which are to be
expected.

The physical basis of our considerations centers on the notion that the ceramic depoles
during the course of the experiment. This depoling process results in changing mechanical,
piezoelectric and dielectric properties which must be taken into account. The constitutive
models which include this and other effects have been proposed by Chen et al. [2] and their
physical justifications offered by Chen and Peercy [3].

While experimental results corresponding to the problem have been reported (for example,
in [4]) no satisfactory theoretical explanations are advanced. Our motivation is to offer what
may be regarded as an attempt in obtaining proper formulation and solutions for the problem.

2. CONSTITUTIVE ASSUMPTIONS AND BASIC EQUATIONS

We consider here the linear electromechanical responses of ferroelectric ceramics. The
problem we have in mind corresponds to the axial mode experiment. In this experiment a
ceramic disc polarized in the axial direction is subjected to time-dependent mechanical loads on
either of its electroded surfaces. The surfaces may be connected via some suitable electrical
circuit. The resulting electrical output of the ceramic due to electromechanical interactions and
the external electrical circuit may be recorded using an appropriate oscilloscope.

The relevant constitutive relations of the stress T and the electric field E at a material point
X and time t germane to our present considerations are

rrd
T(X, t) = JL(O)S(X, t) + Jo dt JL(t - T)S(X, r) dT

rr d
+ u(O)D(t) + Jo dtu(t-r)D(r)dT,

(' d
E(X, t) = w(O)S(X, t) +J

o
dt w(t - r)S(X, T) dT

rrd+ ~(O)D(t) +J
o

dt W - T)D( T) dr,
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where S is the strain and D is the departure of the electric displacement from some initial
electric displacement Dr which characterizes the state of remanent polarization of the ceramic.
The strain S is given by the gradient of the mechanical displacement u. During the passage of a
mechanical disturbance or the application of an electric field the number of aligned dipoles may
be altered, resulting in changes in the material properties. When the number of aligned dipoles
decreases or increases the values of the functions /L, u and w also decrease or increase so that
they may be either relaxation or creep functions; whereas ~ is always a relaxation function. In
addition, the ceramic also exhibits mechanical dissipation which, we suspect, dominates the
effects of poling or depoling so that /L may be taken as a relaxation function. Note that in (2.1)
and (2.2) the electric displacement D is independent of X. This is a consequence of Gauss' law
and our assumption that the ceramic does not contain any free charge. Formulae (2.1) and (2.2)
are linear versions of those proposed by Chen et al.l2}; the physical bases for their proposition
are given by Chen and Peercy!3].

The equation of balance of linear momentum together with the constitutive relation of the
stress (2.1) yield the usual equation

(2.3)

for a material exhibiting mechanical dissipation, where p is the mass density. However, its
solution need not be straightforward because its boundary conditions may depend on D. The
governing equation for D is obtained via Kirchhoff's law. We now presume that the disc is
bounded by the pair of points (X" X2). Then, for the case of an inductive-resistive external
circuit, we have

- JX2
E(X, t) dX ; i(t)R +ddi(t) L,

~ t
(2.4)

where i is the current in the external circuit, Rand L are its resistance and inductance.
Formula (2.4), together with the relation, i == AdUdt, with A being the area of each electrode,
and the constitutive relation of the electric field (2.2) yield the governing equation for D, viz.

where d; X2 - Xl, and

JX
2 a JX' l' d af(t); -cu(O) -xu(X, t) dX - -dw(t - T) aX u(X, T) d'T dX.

XI a X2 0 t
(2.6)

Notice that ~, specifically ~(0)J1, plays the role of capacitance so that the model resembles an
L-C-R circuit. Formulae (2.3) and (2.5) together with the appropriate boundary initial values ,
e.g.

:t u(X" T) =u.(t), u(X2, t) =0, u(X, 0) :::: 0,

d
D(O) == 0, dt D(O) ; 0

a
at u(X, 0) = 0,

(2.7)

constitute the coupled proplem for the inductance-resistance experiment.
We must now specify the properties of the functions /L, u, wand { appearing in the

constitutive relations (2.1) and (2.2). For the purposes of this paper, we let

/L(S) = (/Lo - /L~) e -sir. + /Lx, p.o> /L"" > 0,

u(S) = (uo- u",) e- S
/
T

" + u"',

cu(s) =(w - w~) e- slr
" +w",

~(s) = ({o- {",,)e-slr~+ ~"'" ~O> ~~>O.
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Notice that p. and ~ are relaxation functions with relaxation times 1'po and 1'(> and CT and 61 are
relaxation or creep functions depending on whether ICT~ and ItaJoI are greater or less than ICT..j and
16I..j with 1'~ and 1'. being relaxation or retardation times.

We note that if the disc is impacted by a linear elastic material "0" with constant velocity I),

then it can be shown thatt

where PoVo is the acoustic impedance of material ..0," p~ == P.o, and Vii is the speed of the
wave associated with each constant particle velocity. Actually, Vii depends on the values of p.;
but, for convenience, we have taken VII to be constant, and we may let pV,} == ILo or p....

3. SOLUTIONS OF EXAMPLE PROBLEMS

It seems that the linearity and convolution integrals of the formulae of Section 3 make the
problem represented by (2.7) and (2.8) a neutral candidate for using Laplace transform
techniques. However, the transforms are complicated and one does not have much hope of
isolating singularities analytically for inversion integral solutions. A numerical method for
inverting the transform solutions has been developed in a previous paper[6l, and we again
appeal to the method in the solution of the present problem.

In order to effect numerical solutions of the problem, we consider a hypothetical material
for whicM

p == 7.8 gm/cm3
,

P.o == 158 GPa, p... == ap.o,

CTo == 610 == 2.25 x 10' VIcm, CT.. == bCTo, 61.. == ClAIo,

~o == J(¥ VcmlP.e, ~.. == d~o,

where a, b, C and d are assignable constants, and the dimensions of the specimen are A == 1cm2

and 11 == 0.25 cm. We also presume that the specimen is impacted by a linear elastic material
with velocity v == 0.01 cm/fJ-sec and whose acoustic impedance is that of the instantaneous
acoustic impedance of the specimen, and we let pvl == 1Lo.

First, we note that for the case of linear piezoelectricity, viz. a == b == C == d == I, and for the
situation when R == 0 and L == 0.03 fJ-H, our solutions indicate that both the current and tbe
voltage are oscillatory with constant amplitudes, and they are approx. 90" out of phase. Further,
since R == 0, the voltage oscillates about zero.

We next consider the situation when

a == 0.9, T". == 0.5 p.sec,

b == C == 0.6, T" == 1'. == 0.01 fJ-sec,

d == 0.75, 1't == 0.4 fJ-sec,

and R == 0.5 n, L == 0.03 IIoH. This corresponds to the case of very rapid depoling (manifested by
the rather small values for 1'" and T.). Figures I and 2 show that the oscillations of both the
current and the voltage are now damped. This damping is caused by the presence of resistance
in the external circuit and by the presence of dielectric relaxation. Notice also that the general
trends of the current and the voltage are monotonically increasing. This is a consequence of
very rapid depoling.

tTbe ~erivation of (2.8) follows from the conditions of continuity of stress and mechanical di$placement at XI aftd the
assumption that the wave proJlllltion in the disc in the vicinity of XI is relatively undistorted in the sense of Wbitham[S,
Chap. 3).

fI'hese properties are indicative of the responses of a PZT ceramic, a solid solution of lead lirconate ana lead titanate.
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Fig. I. Current for the case of rapid depoling.
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Fig. 2. Voltage for the dase of rapid depoling.
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Fig. 3. Current for the case of gradual depoling.

The case of a large amount of depoling and relatively long depoling times is also of interest.

In this situation. we let

b = c = 0.1; Tu = Tw = 0.2 J.Lsec,
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Fig. 4. Voltage for the case of gradual depoling.

and retain the values of all other parameters. Figures 3 and 4 indicate that the oscillations of the
current and the voltage are again damped, but now their general trends decrease monotonically
after attaining initial maximum values. This, of course, is in contrast to the previous situation.

In closing, we should remark that while we have exhibited the general features of the
solutions of the problem, it is clear that a myriad of results are possible depending on the
choices of the various parameters. The results shown graphically in the figures, however, are
indicative of the type solutions that are expected for this problem. It should also be pointed out
that experimental results qualitatively similar to our numerical results have been reported by
Lysne [4) but quantitative comparisons are not possible at this time because of the lack of
sufficient material information.
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